4.7 Article Proceedings Paper

Syngas production by electrocatalytic reduction of CO2 using Ag-decorated TiO2 nanotubes

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 50, 页码 26458-26471

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.04.180

关键词

Electrocatalyst; CO2 reduction; Titania nanotube; Silver nano particles; Electrochemical surface area

向作者/读者索取更多资源

Huge efforts have been done in the last years on electrochemical and photoelectrochemical reduction of CO2 to offer a sustainable route to recycle CO2. A promising route is to electrochemically reduce CO2 into CO which, by combination with hydrogen, can be used as a feedstock to different added-value products or fuels. Herein, perpendicular oriented TiO2 nanotubes (NTs) on the electrode plate were grown by anodic oxidation of titanium substrate and then decorated by a low loading of silver nanoparticles deposited by sputtering (i.e. Ag/TiO2 NTs). Due to their quasi one-dimensional arrangement, TiO2 NTs are able to provide higher surface area for Ag adhesion and superior electron transport properties than other Ti substrates (e.g. Ti foil and TiO2 nanoparticles), as confirmed by electrochemical (CV, EIS, electrochemical active surface area) and chemical/morphological analysis (FESEM, TEM, EDS). These characteristics together with the role of the TiO2 NTs to enhance the stability of CO2 center dot- intermediate formed due to titania redox couple (Ti-IV/Ti-III) lead to an improvement of the CO production in the Ag/TiO2 NTs electrodes. Particular attention has been devoted to reduce the loading of noble metal in the electrode(14.5 %w/%w) and to increase the catalysts active surface area in order to decrease the required overpotential. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据