4.7 Article

CVFEM analysis for Fe3O4-H2O nanofluid in an annulus subject to thermal radiation

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2018.11.124

关键词

Fe3O4-H2O nanofluid; Thermal radiation; Magnetic field; CVFEM

向作者/读者索取更多资源

Colloidal nanoparticles suspensions (nanofluids) are the materials of consideration for thermal engineering due to their typically enhanced heat transportation characteristics in comparison to base liquid. Nanoliquids have utilizations in transportation, solar absorption, nuclear systems chilling, friction reduction and energy storage etc. Besides, magnetic nanoliquids are utilized in the cancer therapeutics via implementation of drug delivery and cancer imaging. Thus, in view of such utilizations, here modeling and simulations are presented to scrutinize the natural convective Fe3O4-water nanoliquid flow in an annulus between a triangle and a rhombus enclosures. Thermal radiation aspect is considered for formulation. CVFEM is implemented for computations of numerical outcomes. Impacts of embedding variables on the flow and heat transfer features have been perused. Furthermore a correlation for average Nusselt number is established in terms of energetic parameters. The obtained results portray that average Nusselt number rises subjected to Rayleigh number, radiation parameter and volume fraction of nanofluid while it diminishes when Hartmann number is increased. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据