4.7 Article

Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2019.03.007

关键词

Biological nano-fluid; Microchannel heat sink; Fluid flow; Thermal performance; Entropy generation

向作者/读者索取更多资源

The objective of this numerical assessment is to examine the hydrothermal and irreversibility behaviour of a biologically synthesized water-silver nano-fluid in a wavy microchannel heat sink (MCHS). The green tea leaf extract is utilized to prepare silver nanoadditives. The impacts of nanoadditives volume fraction, Reynolds number, amplitude and wavelength of the channel on the convective heat transfer coefficient, CPU surface temperature, pumping power, as well as the thermal, frictional, and total irreversibilities are investigated. The results show that enhancing the Reynolds number and nanoadditives fraction intensifies the performance of heat sink by boosting the convective heat transfer coefficient of the working fluid which favorably reduces the CPU surface temperature and the rate of thermal and total irreversibilities and importantly leads to the temperature uniformity of the CPU surface. However, increase in Reynolds number adversely affects both the pumping power and the frictional irreversibility in the system. In addition, it is found that the nano-fluid always has a better cooling performance in comparison with the pure water. Moreover, it is reported that augmenting the wavelength results in an increase in the hydrothermal performance of nano-fluid and decrease in the global total entropy generation rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据