4.7 Article

Synthesis, Crystal Structure Analysis, and Electrochemical Properties of Rock-Salt Type MgxNiyCozO2 as a Cathode Material for Mg Rechargeable Batteries

期刊

INORGANIC CHEMISTRY
卷 58, 期 9, 页码 5664-5670

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b03638

关键词

-

资金

  1. ALGA -SPRING project of the Japan Science and Technology Agency (JST)

向作者/读者索取更多资源

Research has recently been focused on high-performance next-generation batteries to replace secondary batteries due to capacity limitations and safety concerns. The Mg secondary battery is one candidate to realize high energy density storage batteries for practical applications. Ni and Co typically exhibit desirable electrochemical characteristics; therefore, we have attempted to synthesize new rock-salt compositions, MgxNiyCozO2, (x + y + z <= 2.0), as cathode materials for Mg rechargeable batteries, and investigated their crystal structures and electrochemical characteristics. The materials were synthesized by the reverse coprecipitation method. Powder X-ray diffraction and transmission electron microscopy analyses showed the obtained samples were a single phase of the rock-salt structure with the space group Fm (3) over barm. The vacancies at the metal sites were estimated by Rietveld analysis to determine the new chemical composition of MgxNiyCoz square 2-x-y-zO2 (0.41 < x < 0.64, 0.82 < y < 1.23, 0.24 < z < 0.61). Charge-discharge tests indicated the discharge characteristics varied according to the Mg composition and the Ni/Co ratio. The Co and Mg compositions were considered to facilitate the insertion/deinsertion of Mg2+. The present new material has the potential to be a superior cathode material for Mg secondary batteries by first-principles calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据