4.7 Article

Impact of the fac/mer Isomerism on the Excited-State Dynamics of Pyridyl-carbene Fe(II) Complexes

期刊

INORGANIC CHEMISTRY
卷 58, 期 8, 页码 5069-5081

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.9b00138

关键词

-

资金

  1. French Agence Nationale de la Recherche [ANR-16-CE07-0013-02]
  2. Region Grand Est government (France)
  3. Labex NIE

向作者/读者索取更多资源

The control of photophysical properties of iron complexes and especially of their excited states decay is a great challenge in the search for sustainable alternatives to noble metals in photochemical applications. Herein we report the synthesis and investigations of the photophysics of mer and fac iron complexes bearing bidentate pyridyl-NHC ligands, coordinating the iron with three ligand-field-enhancing carbene bonds. Ultrafast transient absorption spectroscopy reveals two distinct excited state populations for both mer and fac forms, ascribed to the populations of the T-1 and the T-2 states, respectively, which decay to the ground state via parallel pathways. We find 3-4 ps and 15-20 ps excited-state lifetimes, with respective amplitudes depending on the isomer. The longer lifetime exceeds the one reported for iron complexes with tridentate ligands analogues involving four iron-carbene bonds. By combining experimental and computational results, a mechanism based on the differential trapping of the triplet states in spin-crossover regions is proposed for the first time to explain the impact of the fac/mer isomerism on the overall excited-state lifetimes. Our results clearly highlight the impact of bidentate pyridyl-NHC ligands on the photophysics of iron complexes, especially the paramount role of fac/mer isomerism in modulating the overall decay process, which can be potentially exploited in the design of new Fe(II)-based photoactive compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据