4.7 Article

Heuristic Dynamic Programming Based Online Energy Management Strategy for Plug-In Hybrid Electric Vehicles

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 68, 期 5, 页码 4479-4493

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2019.2903119

关键词

Plug-in hybrid electric vehicle; on-line energy optimization; heuristic dynamic programming; back propagation neural network

资金

  1. National Natural Science Foundation of China [61573030]
  2. Beijing Natural Science Foundation [L171001]

向作者/读者索取更多资源

For the online energy optimization problem of plug-in hybrid electric vehicles (P-HEVs), this paper proposes a heuristic dynamic programming (HDP) based online energy management strategy, to minimize the fuel consumption of the P-HEV. First of all, considering the uncertain nonlinear dynamic process of a vehicle in the actual traffic environment, we adopt the back propagation neural network (BPNN) to construct the dynamic model of the P-HEV. Then, on this basis, we utilize the HDP to establish an energy management controller with the aim of minimizing energy consumption of the P-HEV. Moreover, the energy management controller is implemented by an online energy management strategy algorithm. To verify the effect of the controller, we employ a practical route in Beijing road network to simulate the BPNN model of the P-HEV and the proposed energy management strategy. The experimental results show several advantages of our strategy. First, compared to the analytic model, the BPNN model can reflect the real dynamic process of the P-HEV with a higher precision. Second, the assigned torques by the strategy can effectively make the vehicle track the desired vehicle-speeds, and the tracking accuracy of the vehicle-speed is higher than 98%. Besides, on the premise of ensuring the real-time performance, the proposed strategy can further reduce the fuel consumption and emissions of the P-HEV when compared with the existing online energy management strategies, although its fuel consumption is more than that of the offline global optimization energy management strategy by 4% approximately.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据