4.7 Article

Ultra-Reliable and Low-Latency Communications in Unmanned Aerial Vehicle Communication Systems

期刊

IEEE TRANSACTIONS ON COMMUNICATIONS
卷 67, 期 5, 页码 3768-3781

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2019.2896184

关键词

Unmanned aerial vehicle; ultra-reliable and low-latency communications; antenna configuration; network availability

资金

  1. Australian Research Council [DP150104019, DP190101988]
  2. National Natural Science Foundation of China [61671074, 61731002]
  3. Fundamental Research Funds for the Central Universities [2018XKJC01]
  4. SUTD-ZJU Research Collaboration [SUTD-ZJU/RES/01/2016, SUTD-ZJU/RES/05/2016]

向作者/读者索取更多资源

In this paper, we establish a framework for enabling ultra-reliable and low-latency communications in the control and non-payload communications (CNPC) links of the unmanned aerial vehicle (UAV) communication systems. We first derive the available range of the CNPC links between UAVs and a ground control station. The available range is defined as the maximal horizontal communication distance within which the round-trip delay and the overall packet loss probability can be ensured with a required probability. To exploit the macro-diversity gain of the distributed multi-antenna systems (DAS) and the array gain of the centralized multi-antenna systems (CAS), we consider a modified DAS (M-DAS), where the ground control station is equipped with the distributed access points (APs), and each AP can have multiple antennas. We then show that the available range can be maximized by judiciously optimizing the altitude of UAVs, the duration of the uplink and downlink phases, and the antenna configuration. To solve the non-convex problem, we propose an algorithm that can converge to the optimal solution in DAS and CAS, and then extend it into more general M-DAS. The simulation and numerical results validate our analysis and show that the available range of M-DAS can be significantly larger than those of the DAS and CAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据