4.6 Article

Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion

期刊

GEOPHYSICS
卷 84, 期 5, 页码 M1-M13

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2018-0839.1

关键词

-

资金

  1. School of Energy Resource of the University of Wyoming
  2. Department of Geology and Geophysics of the University of Wyoming
  3. Petrobras

向作者/读者索取更多资源

One of the main objectives in the reservoir characterization is estimating the rock properties based on seismic measurements. We have developed a stochastic sampling method for the joint prediction of facies and petrophysical properties, assuming a nonparametric mixture prior distribution and a nonlinear forward model. The proposed methodology is based on a Markov chain Monte Carlo (MCMC) method specifically designed for multimodal distributions for nonlinear problems. The vector of model parameters includes the facies sequence along the seismic trace as well as the continuous petrophysical properties, such as porosity, mineral fractions, and fluid saturations. At each location, the distribution of petrophysical properties is assumed to be multimodal and nonparametric with as many modes as the number of facies; therefore, along the seismic trace, the distribution is multimodal with the number of modes being equal to the number of facies power the number of samples. Because of the nonlinear forward model, the large number of modes and as a consequence the large dimension of the model space, the analytical computation of the full posterior distribution is not feasible. We then numerically evaluate the posterior distribution by using an MCMC method in which we iteratively sample the facies, by moving from one mode to another, and the petrophysical properties, by sampling within the same mode. The method is extended to multiple seismic traces by applying a first-order Markov chain that accounts for the lateral continuity of the model properties. We first validate the method using a synthetic 2D reservoir model and then we apply the method to a real data set acquired in a carbonate field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据