4.7 Review

Pyrolysis of microalgae: A critical review

期刊

FUEL PROCESSING TECHNOLOGY
卷 186, 期 -, 页码 53-72

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2018.12.012

关键词

Microalgae; Pyrolysis; Bio-oil; Biochar; Mechanism

资金

  1. School of Chemical Engineering and Pharmacy at Wuhan Institute of Technology
  2. Natural Science Foundation of Guangdong Province [2017A030310133]
  3. College of Chemistry and Environmental Engineering at Shenzhen University

向作者/读者索取更多资源

Microalgae as an environmentally friendly renewable feedstock can be processed into an array of products via conversion technologies such as algal lipid upgrading, liquefaction, pyrolysis, gasification, and bioethanol technology. As a unique chemical reaction, pyrolysis of microalgae yields useful chemicals like light olefins, alkanes, syngas, and biochar, as well as the bio-oils with less oxygen, more hydrocarbons, and higher gross heating values than the bio-oils derived from cellulosic biomass. The article reviews direct pyrolysis and catalytic pyrolysis of microalgae, pyrolytic products, reaction mechanisms, and upgrading of microalgal bio-oils. Based on critical analyses of the state-of-the-art developments in this field, the article provides the following perspectives. The current major bottleneck of microalgal technologies is still the productivity, which makes microalgae less abundant than cellulosic biomass at this stage. Biorefinery of microalgae shall be further developed to produce multiple products from various microalgal species. Determination of high value-added chemicals that can be produced from microalgae, especially from microalgal proteins, might significantly promote the development of the conversion technologies and related catalytic science. Designing novel catalysts for the selective conversion of microalgae into fine chemicals may increase the effective use of microalgae and the economics of the process. With the advancement of science and technology, catalytic pyrolysis technology has the potential to process microalgae into biofuels and fine chemicals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据