4.5 Article

Using LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland

期刊

FORESTRY
卷 92, 期 3, 页码 253-263

出版社

OXFORD UNIV PRESS
DOI: 10.1093/forestry/cpz010

关键词

-

类别

资金

  1. Finnish Cultural Foundation [00170705]
  2. Niemi Foundation [20170085]

向作者/读者索取更多资源

Tree growth information is crucial in forest management and planning. Terrain-derived attributes such as the topographic wetness index (TWI), in addition to leaf area index (LAI) are closely related to tree growth, but are not commonly used in empirical growth models. In this study, we examined if modified TWI and LAI estimated from airborne light detection and ranging (LiDAR) data could be used to improve the predictions of a national single-tree diameter growth model. Altogether 1118 sample trees were selected within 197 subjectively placed plots in randomly selected forest stands in south-eastern Finland. Linear mixed effect (LME) and multilayer perceptron models were used to model the bias of 5-year growth predictions of the model and thus ultimately improve its predictions. The root mean square error (RMSE) of the national model was 0.604 cm. LME modelling reduced this value to 0.404 cm and MLP to 0.568 cm. The predictors included in the best-performing LME model were modified TWI, LAI estimated from LiDAR intensities, and elevation. Without an LAI estimate, the best RMSE was 0.436 cm. When applied as such, original and modified TWIs produced similar accuracy. We conclude that both TWI and LAI obtained from LiDAR data improve the diameter growth predictions of the national model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据