4.4 Article

Identification of gas-liquid flow regimes using a non-intrusive Doppler ultrasonic sensor and virtual flow regime maps

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.flowmeasinst.2019.05.002

关键词

Doppler shift; PCA; S-shaped riser; SVM

资金

  1. DOST-ERDT Faculty Development Fund of the Republic of the Philippines

向作者/读者索取更多资源

The accurate prediction of flow regimes is vital for the analysis of behaviour and operation of gas/liquid two-phase systems in industrial processes. This paper investigates the feasibility of a non-radioactive and non-intrusive method for the objective identification of two-phase gas/liquid flow regimes using a Doppler ultrasonic sensor and machine learning approaches. The experimental data is acquired from a 16.2-m long S-shaped riser, connected to a 40-m horizontal pipe with an internal diameter of 50.4 mm. The tests cover the bubbly, slug, churn and annular flow regimes. The power spectral density (PSD) method is applied to the flow modulated ultrasound signals in order to extract frequency-domain features of the two-phase flow. Principal Component Analysis (PCA) is then used to reduce the dimensionality of the data so as to enable visualisation in the form of a virtual flow regime map. Finally, a support vector machine (SVM) is deployed to develop an objective classifier in the reduced space. The classifier attained 85.7% accuracy on training samples and 84.6% accuracy on test samples. Our approach has shown the success of the ultrasound sensor, PCA-SVM, and virtual flow regime maps for objective two-phase flow regime classification on pipeline-riser systems, which is beneficial to operators in industrial practice. The use of a non-radioactive and non-intrusive sensor also makes it more favorable than other existing techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据