4.7 Article

Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 134, 期 -, 页码 112-119

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2019.05.041

关键词

Image segmentation; LIDC-IDRI data set; Active contour model; Inhomogeneity; Multi-scale Gaussian distribution; Enhanced CNN classifier

向作者/读者索取更多资源

The World Health Organization (WHO) recently reported that the lung tumor was the leading cause of death worldwide. In this study, a practical computer-aided diagnosis (CAD) system is developed to increase a patient's chance of survival. Segmentation is acritical analysis tool for dividing a lung image into several sub-regions. This work characterized an automated 3-D lung segmentation tool modeled by an active contour model for computed tomography (CT) images. The proposed segmentation model is used to integrate the local image bias field formulation with the active contour model (ACM). Here, a local energy term is specified by using the mean squared error to reconcile severely in homogeneous CT images and used to detect and segment tumor regions efficiently with intensity inhomogeneity. In addition, a Multiscale Gaussian distribution was applied to the CT images for smoothening the evolution process, and features were determined. For proposed model evaluation, were used the Lung Image Database Consortium (LIDC-IDRI) data set that consisted of 850 lung nodule-lesion images that were segmented and refined to generate accurate 3D lesions of lung tumor CT images. Tumor portions were extracted with 97% accuracy. Using continuous feature extraction of 3-D images leads to attributing the deformation and quantifies the centroid displacement. In this work, predict the centroid displacement and contour points by a curve evolution method which results in more accurate predictions of contour changes and than the extracted images were classified using an Enhanced Convolutional Neural Network (CNN) Classifier. The experimental result shows that the modified Computer Aided Diagnosis (CAD) system has a high ability to acquire good accuracy and assures automated diagnosis of a lung tumor. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据