4.5 Article

Mechanism of selective anticancer activity of isothiocyanates relies on differences in DNA damage repair between cancer and healthy cells

期刊

EUROPEAN JOURNAL OF NUTRITION
卷 59, 期 4, 页码 1421-1432

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00394-019-01995-6

关键词

DNA replication; Genotoxic stress; Phenethyl isothiocyanate; Sulforaphane; Prostate cancer

向作者/读者索取更多资源

Purpose Isothiocyanates (ITCs) are compounds derived from Brassica plants with documented anticancer activity. Molecular mechanisms of their selective activity against cancer cells are still underexplored. In this work, the impact of ITC on DNA replication and damage was compared between PC-3 prostate cancer cells and HDFa normal fibroblasts as well as PNT2 prostate epithelial cells. Methods Cells were treated with sulforaphane or phenethyl isothiocyanate. [H-3]thymidine incorporation and the level of histone gamma H2A.X were estimated as indicators of DNA replication and double-strand breaks (DSB), respectively. Levels of HDAC3, CtIP, and p-RPA were investigated by immunoblotting. Comet assay was performed to visualize DNA damage. Results ITCs inhibited DNA replication in all tested cell lines, and this activity was independent of reactive oxygen species of mitochondrial origin. It was followed by DSB which were more pronounced in cancer than noncancerous cells. This difference was independent of HDAC activity which was decreased in both cell lines when treated with ITCs. On the other hand, it correlated with faster removal of DSB, and thus, transient activation of repair proteins in normal cells, while in PC-3 prostate cancer, cell DNA repair was significantly less effective. Conclusion DNA damage induced by ITCs is a consequence of the block in DNA replication which is observed in both, cancer and normal cells. Selective antiproliferative activity of ITCs towards cancer cells results from less efficient DNA repair in cancer cells relative to normal cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据