4.8 Article

Inherent Metals of a Phytoremediation Plant Influence Its Recyclability by Hydrothermal Liquefaction

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 11, 页码 6580-6586

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b00262

关键词

-

资金

  1. National Natural Science Foundation of China [21407027, 21577025]
  2. National Key Technology Support Program [2015BAD15B06]

向作者/读者索取更多资源

Plants used for phytoremediation of contaminated soil are often enriched in certain metals present in the soil. However, the role of the inherent metal content of the plants on their recycling by hydrothermal liquefaction (HTL) has not been considered in previous studies. The present study showed that Rhus chinensis plants grown in highly Pb-polluted soil can release inherent metals (such as Pb, K, Ca, Na, and Mg) into the HTL solution, further enhancing the production of formic and acetic acids and decreasing the yield of levulinic acid. Theoretical calculations using HTL reactions of model compounds showed that a low Pb content could enhance production of levulinic and formic acids via catalysis of the rehydration reaction for 5-(hydroxymethyl)furfural, while a high Pb content promoted the decomposition of levulinic acid to acetic acid. Fourier transform ion cyclotron resonance mass spectrometry analysis confirmed that Pb2+ preferentially promoted the depolymerization of macromolecular compounds with the lignin structure. In general, the inherent metals occurring in the phytoremediation plant influenced the production of organic acids during HTL recycling. Undoubtedly, the combination of phytoextraction and HTL reaction can present a practical pathway toward a sustainable soil remediation technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据