4.8 Article

Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification

期刊

ENVIRONMENT INTERNATIONAL
卷 125, 期 -, 页码 135-141

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.01.033

关键词

Iron-based MOFs; AuNP-aptamer; Antibiotics detection; Mechanism

资金

  1. National Science Foundation of China (NSFC) [21777119, 21577100]
  2. Science & Technology Commission of Shanghai Municipality [17230711600, 17DZ2200900]
  3. Shanghai Rising-Star Program [18QA1404300]
  4. Fundamental Research Funds for the Central Universities [22120180102]
  5. Young Excellent Talents in Tongji University [2015KJ001]

向作者/读者索取更多资源

The development of a feasible antibiotic detection method is important in water quality analysis. In this study, we developed a metal-organic framework (MOF)-aptamer-3,3',5,5'-tetramethylbenzidine (TMB)-H2O2-based sensing platform composed of the reaction variable of TMB catalytic oxidation as the label (from colorless to blue) and aptamer as the target recognition element for antibiotic detection. The platform works by calculating the relation between the antibiotic concentration and the resultant decrease in MOF's catalytic activity. Basing from the comparison of typical iron-based MOF materials (Fe-MIL-53, Fe-MIL-88A, and Fe-MIL-100), we selected Fe-MIL-53 to obtain an improved signal amplification effect. The outstanding performance of the Fe-MIL-53-based sensing platform can be attributed to its topological flexibility and small electron transfer impedance. In addition, a signal increment of up to 86% was obtained with an intensified gold nanoparticle (AuNP)-supported aptamer. The inhibitory catalytic activity stemmed from the coating of antibiotic-(AuNP-aptamer) conjugates onto the outer surface of the MOF material, which increased the impedance and decreased the electron transfer efficiency. Validation results indicated that the platform showed high selectivity and sensitivity (i.e., wide linearity range of 50-200 nM, detection limit up to 8.1 ng/mL, and recovery rate of 106%-110%) for chloramphenicol detection and universal applicability for other antibiotics, including ampicillin, tetracycline, and oxytetracycline. In general, the detection reliability and easy operation of this platform render it a promising candidate for antibiotic detection in future water quality monitoring practices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据