4.6 Article

A Novel Linear Spectrum Frequency Feature Extraction Technique for Warship Radio Noise Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Duffing Chaotic Oscillator, and Weighted-Permutation Entropy

期刊

ENTROPY
卷 21, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/e21050507

关键词

underwater acoustic signal; linear spectrum; frequency feature extraction; empirical mode decomposition (EMD); complete EEMD with adaptive noise (CEEMDAN); duffing chaotic oscillator (DCO); weighted-permutation entropy (W-PE); warship radio noise

资金

  1. National Natural Science Foundation of China [11574250, 61703333]
  2. Industrial Public Relation Project of Shaanxi [2017GY-083]

向作者/读者索取更多资源

Warships play an important role in the modern sea battlefield. Research on the line spectrum features of warship radio noise signals is helpful to realize the classification and recognition of different types of warships, and provides critical information for sea battlefield. In this paper, we proposed a novel linear spectrum frequency feature extraction technique for warship radio noise based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), duffing chaotic oscillator (DCO), and weighted-permutation entropy (W-PE). The proposed linear spectrum frequency feature extraction technique, named CEEMDAN-DCO-W-PE has the following advantages in comparison with other linear spectrum frequency feature extraction techniques; (i) as an adaptive data-driven algorithm, CEEMDAN has more accurate and more reliable decomposition performance than empirical mode decomposition (EMD) and ensemble EMD (EEMD), and there is no need for presetting parameters, such as decomposition level and basis function; (ii) DCO can detect the linear spectrum of narrow band periodical warship signals by way of utilizing its properties of sensitivity for weak periodical signals and the immunity for noise; and (iii) W-PE is used in underwater acoustic signal feature extraction for the first time, and compared with traditional permutation entropy (PE), W-PE increases amplitude information to some extent. Firstly, warship radio noise signals are decomposed into some intrinsic mode functions (IMFs) from high frequency to low frequency by CEEMDAN. Then, DCO is used to detect linear spectrum of low-frequency IMFs. Finally, we can determine the linear spectrum frequency of low-frequency IMFs using W-PE. The experimental results show that the proposed technique can accurately extract the line spectrum frequency of the simulation signals, and has a higher classification and recognition rate than the traditional techniques for real warship radio noise signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据