4.6 Article

On the Statistical Properties of Multiscale Permutation Entropy: Characterization of the Estimator's Variance

期刊

ENTROPY
卷 21, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/e21050450

关键词

Multiscale Permutation Entropy; ordinal patterns; estimator variance; Cramer-Rao Lower Bound; finite-length signals

资金

  1. french Centre Val-de-Loire region [15088PRI]

向作者/读者索取更多资源

Permutation Entropy (PE) and Multiscale Permutation Entropy (MPE) have been extensively used in the analysis of time series searching for regularities. Although PE has been explored and characterized, there is still a lack of theoretical background regarding MPE. Therefore, we expand the available MPE theory by developing an explicit expression for the estimator's variance as a function of time scale and ordinal pattern distribution. We derived the MPE Cramer-Rao Lower Bound (CRLB) to test the efficiency of our theoretical result. We also tested our formulation against MPE variance measurements from simulated surrogate signals. We found the MPE variance symmetric around the point of equally probable patterns, showing clear maxima and minima. This implies that the MPE variance is directly linked to the MPE measurement itself, and there is a region where the variance is maximum. This effect arises directly from the pattern distribution, and it is unrelated to the time scale or the signal length. The MPE variance also increases linearly with time scale, except when the MPE measurement is close to its maximum, where the variance presents quadratic growth. The expression approaches the CRLB asymptotically, with fast convergence. The theoretical variance is close to the results from simulations, and appears consistently below the actual measurements. By knowing the MPE variance, it is possible to have a clear precision criterion for statistical comparison in real-life applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据