4.6 Article

Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction

期刊

ELECTROCHIMICA ACTA
卷 317, 期 -, 页码 191-198

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.05.150

关键词

Ni-Co phosphides; Hydrogen evolution reaction; Electrocatalysis; Water splitting

资金

  1. Natural Science Foundation of China [21872040]
  2. Natural Science Foundation of Guangxi [2016GXNSFCB380002]
  3. Nanning Science & Technology Project [20171107]
  4. Hundred Talents Program of Guangxi Universities
  5. Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE [T1EDK-02442]
  6. European Union

向作者/读者索取更多资源

In this work, bimetallic nickel-cobalt phosphide (Ni-Co-P/NF) self-supported on nickel foam (NF) is synthesized for hydrogen evolution reaction (HER). A two-step method of electrodeposition with subsequently low-temperature phosphatizing is adopted. The physicochemical characterizations of the as-prepared Ni-Co-P/NF show that the surface is covered by metallic phosphide compounds (NiCoP, NiP and Co2P) with unique morphology, consisted of nanosheets randomly dispersed on villiform 3D integrated framework. The electrochemical characterizations demonstrate that Ni-Co-P/NF exhibits the highest performance for HER, in 1.0 M KOH aqueous solution, compared to other as-prepared electrocatalysts. Specifically, it requires very low overpotential values of 85, 210 and 350 mV for delivering large current densities of -10, -500 and -1,500 mA cm(-2), respectively, revealing a low Tafel slope of 46 mV dec(-1). Besides, Ni-Co-P/NF also displays long-term durability lasting 24 h without obvious deactivation. This work highlights that the NiCoP, NiP and Co2P active phases play a crucial role for the good HER activity. In addition, the unique morphology with self-supported structure provides large electrochemical surface area, allowing the exposure of higher amount of active sites for HER. These self-supported electrocatalysts, without binder, could also improve the electrode's HER activity and stability. This work, therefore, provides a controllable and feasible strategy to synthesize bimetallic phosphides of unique morphology with high HER activity. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据