4.6 Article

Electrode thickness-dependent formation of porous iron electrodes for secondary alkaline iron-air batteries

期刊

ELECTROCHIMICA ACTA
卷 314, 期 -, 页码 61-71

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.05.025

关键词

Carbonyl iron electrode; Electrochemical formation; Electrode thickness-dependency; Rechargeable iron-air batteries; Sulfide additives

资金

  1. German Federal Ministry of Education and Research (BMBF) [03EK3032, 03SF0499]

向作者/读者索取更多资源

Secondary iron-air batteries re-gained considerable scientific attention due to their excellent energy densities, pronounced environmental friendliness and exceptional reversibility compared to other metal-air batteries. In order to exploit the energy density of iron on full-cell level, the ratio between anode- and overall battery material should be as large as possible, aiming at practically competitive iron-air battery performances in the future. Therefore, here, we report the investigation of comparatively thick, pressed-plate, carbonyl iron-anodes and the distinctive attempt to further elucidate the processes behind the electrochemical formation. In order to do so, the electrode thickness-dependent charge-/discharge performance, the wetting behavior and the specific surface area of the electrodes were examined. In addition to the established dissolution and precipitation mechanism of iron, we propose that a gradually increasing number of electrochemically active carbonyl iron particles may be an additional source of active iron surface for the steeply increasing discharge capacity during the formation, which is particularly relevant for thick rather than thin electrodes. Furthermore, substantiated by cross-section SEM-images, we propose that the increasing number of active carbonyl iron particles is induced by microstructural changes of the electrode, hypothetically driven by hydrogen evolution during the formation period. Bound to the access of electrolyte, the process suggests the presence of active material on the outside and inactive, since non-wetted, material on the inside of porous carbonyl iron-anodes depending on their state of formation. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据