4.7 Article

Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 171, 期 -, 页码 26-36

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2018.12.058

关键词

Phytoremediation; Heavy metal stress; Antioxidant enzymes; Lead toxicity; Eclipta prostrata; Abiotic stress response

向作者/读者索取更多资源

Lead (Pb) contamination of soil is a serious environmental problem, adversely affecting ecosystems, globally. Phytoremediation is an alternative to conventional methods of soil remediation. The success of phytoremediation depends on the identification of suitable native plant species with high biomass to deal with metal contamination. In the present experiment, response of Eclipta prostrata (L.) L., Scoparia dulcis L. and Phyllanthus niruri L. to increase in concentrations of PbNO3.5H(2)0 in the soil for a period of 30 days was tested to assess their suitability in phytoremediation. Pb accumulation in all the three plants was in a concentration-dependent manner. Although S. dulcis survived the soil metal concentrations, it exhibited a stunted growth; P. niruri was found susceptible to Pb toxicity; E. prostrata recorded a maximum uptake of 12484 gig dry weight in its root and 7229 mu g/g dry weight in its shoot, without any adverse impact on growth traits. Bioconcentration factor and translocation factor of the three plants were also calculated, which revealed that E. prostrata has Pb accumulation potential. Therefore, enzymatic antioxidant activities and transmission electron microscopic analysis were carried out to determine the physiological adaptation and tolerance of E. prostrata to Pb stress. Overall, E. prostrata is identified as a tolerant plant showing Pb hyperaccumulation tendencies with essential features for phytoextraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据