4.7 Article

Fracture energy estimates from large-scale laboratory earthquakes

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 511, 期 -, 页码 36-43

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2019.01.031

关键词

laboratory earthquake; fracture energy; fracture mechanics; rupture front; cohesive zone; strain oscillations

资金

  1. USGS Earthquake hazards grant [G18AP00010]
  2. National Science Foundation [EAR-1763499]

向作者/读者索取更多资源

The dynamics of fault ruptures in natural and laboratory earthquakes is governed by a balance of released elastic energy and dissipated local fracture energy. The latter is the result of various friction weakening processes occurring at the fault and is thus often estimated indirectly and from small-scale friction experiments. We analyze high-frequency strain measurements from large-scale laboratory earthquakes with gages positioned slightly away from a granite fault. The strain measurements present rapid fluctuations during fault rupture propagation, as was also observed in other experiments. Characteristics of these strain fluctuations are compared with fracture mechanics theory to estimate local fault properties. We determine fracture energy for secondary rupture fronts, which appear behind the main front where local slip occurred already. Measured fracture energy is consistent with indirect estimates from rupture termination in independent experiments but is orders of magnitude lower than reported values from rotary shear friction experiments, which may be due to large differences in overall slip. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据