4.6 Review

Experimental synthesis and characterization of rough particles for colloidal and granular rheology

期刊

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.cocis.2019.04.003

关键词

Rough particles; Colloidal suspensions; Granular suspensions; Hydrodynamics; Friction; Rheology

资金

  1. North Carolina State University
  2. National Science Foundation [CBET-1804462]
  3. American Chemical Society Petroleum Research Fund [59208-DNI9]

向作者/读者索取更多资源

We review the experimental synthesis of smooth and rough particles, characterization of surface roughness, quantification of the pairwise and bulk friction coefficients, and their effect on the rheology of wet particulate flows. Even in the absence of interparticle attraction or cohesion, such types of flows are broadly ubiquitous, spanning enormous length scales ranging from consumer and food products to earth movements. The increasing availability of model frictional particles is useful to advancing new understanding of particulate rheology. Although hard-sphere particles remain the most widely studied system due to their simplicity, their rigid and frictionless nature cannot predict many of the complex flow phenomena in colloidal and granular suspensions. Besides a myriad of interparticle forces, the presence of tangential interparticle friction arising from either hydrodynamics or solid contacts of asperities is now thought to be responsible for commonalities in shear thickening and jamming phenomena at high volume fractions and shear stresses. The overall richness of the suspension mechanics landscape points to the reunification of colloidal and granular physics in the near future: one in which it may become possible to apply a universal set of physical frameworks to understand the flows of model rough particles across multiple spatiotemporal scales. This can only be accomplished by properly distinguishing between microscopic and bulk friction and by decoupling hydrodynamics and contact contributions within the context of experimental observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据