4.8 Article

Extreme Compartmentalization in a Drosophila Amacrine Cell

期刊

CURRENT BIOLOGY
卷 29, 期 9, 页码 1545-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2019.03.070

关键词

-

资金

  1. Max-Planck Society

向作者/读者索取更多资源

A neuron is conventionally regarded as a single processing unit. It receives input from one or several presynaptic cells, transforms these signals, and transmits one output signal to its postsynaptic partners. Exceptions exist: amacrine cells in the mamma- lian retina [1-3] or interneurons in the locust meso- thoracic ganglion [4] are thought to represent many electrically isolated microcircuits within one neuron. An extreme case of such an amacrine cell has recently been described in the Drosophila visual system. This cell, called CT1, reaches into two neuropils of the optic lobe, where it visits each of 700 repetitive columns, thereby covering the whole visual field [5, 6]. Due to its unusual morphology, CT1 has been suspected to perform local computations [6, 7], but this has never been proven. Using 2-photon calcium imaging and visual stimulation, we find highly compartmentalized retinotopic response properties in neighboring terminals of CT1, with each terminal acting as an independent functional unit. Model simulations demonstrate that this extreme case of compartmentalization is at the biophysical limit of neural computation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据