4.5 Review

A review on thermo-mechanical properties of bi-crystalline and polycrystalline 2D nanomaterials

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10408436.2019.1582003

关键词

Graphene; h-BN; polycrystalline; molecular dynamics; mechanical properties; fracture properties; thermal properties

向作者/读者索取更多资源

Due to outstanding properties, graphene and h-BN nanosheets are emerging as a potential candidate for wide spectrum of applications in the field of engineering and bio-medical science. Graphene and h-BN nanosheets have comparable mechanical and thermal properties, whereas due to high band gap h-BN (similar to 5eV) have contrasting electrical conductivities. Large size graphene and h-BN nanosheets are synthesized by chemical vapor deposition technique, which results in polycrystalline atomic structure. These polycrystalline nanosheets are characterized either by experimental means or numerical simulations. Experimental techniques are considered as most accurate and practical, but cost and time involved in these techniques limits it application at the nanoscale level. On the other hand, atomistic modeling techniques are emerging as viable alternatives to the experimentations, and are accurate enough to predict the mechanical properties, fracture toughness, and thermal conductivities of polycrystalline graphene and h-BN nanosheets. This comprehensive review article encompasses different characterizing techniques used by the researchers for polycrystalline nanosheets. This review will help in elaborating the properties of polycrystalline graphene and h-BN, and also establishing a perspective on how the microstructure impacts its large-scale physical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据