4.7 Article

One-shot generation of near-optimal topology through theory-driven machine learning

期刊

COMPUTER-AIDED DESIGN
卷 109, 期 -, 页码 12-21

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2018.12.008

关键词

Topology optimization; Meta-learning; Active learning

向作者/读者索取更多资源

We introduce a theory-driven mechanism for learning a neural network model that performs generative topology design in one shot given a problem setting, circumventing the conventional iterative process that computational design tasks usually entail. The proposed mechanism can lead to machines that quickly respond to new design requirements based on its knowledge accumulated through past experiences of design generation. Achieving such a mechanism through supervised learning would require an impractically large amount of problem-solution pairs for training, due to the known limitation of deep neural networks in knowledge generalization. To this end, we introduce an interaction between a student (the neural network) and a teacher (the optimality conditions underlying topology optimization): The student learns from existing data and is tested on unseen problems. Deviation of the student's solutions from the optimality conditions is quantified, and used for choosing new data points to learn from. We call this learning mechanism theory-driven, as it explicitly uses domain-specific theories to guide the learning, thus distinguishing itself from purely data-driven supervised learning. We show through a compliance minimization problem that the proposed learning mechanism leads to topology generation with near-optimal structural compliance, much improved from standard supervised learning under the same computational budget. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据