4.7 Article

Multivariate dependent interval finite element analysis via convex hull pair constructions and the Extended Transformation Method

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2018.12.021

关键词

Interval analysis; Dependent intervals; Copula pair constructions; Non-probabilistic analysis; Transformation method; Imprecise probability

资金

  1. Flemish research foundation [G0C2218N, 12P359N]

向作者/读者索取更多资源

Classical (independent) interval analysis considers a hyper-cubic input space consisting of independent intervals. This stems from the inability of intervals to model dependence and results in a serious over-conservatism when no physical guarantee of independence of these parameters exists. In a spatial context, dependence of one model parameter over the model domain is usually modelled using a series expansion over a set of basis functions that interpolate a set of globally defined intervals to local (coupled) uncertainty. However, the application of basis functions is not always appropriate to model dependence, especially when such dependence does not have a spatial nature but is rather scalar. This paper therefore presents a flexible approach for the modelling of dependent intervals that is also applicable to multivariate problems. Specifically, it is proposed to construct the dependence structure in a similar approach to copula pair constructions, yielding a limited set of 2-dimensional dependence functions. Furthermore, the well-known Transformation Method is extended to the case of dependent interval analysis. The applied case studies indicate the flexibility and performance of the method. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据