4.7 Article

Optimization of thickness and delamination growth in composite laminates under multi-axial fatigue loading using NSGA-II

期刊

COMPOSITES PART B-ENGINEERING
卷 174, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.106936

关键词

Modified non-dominated sorting genetic algorithm (NSGA-II); Equivalent constraint model (ECM); Strain energy release rate (SERR); Multi-axial fatigue loading; Local off-axis delamination; In-situ damage effective functions (IDEF)

向作者/读者索取更多资源

Employing NSGA-II, this paper aims to achieve a damage tolerant structure enjoying maximum delamination resistance and thinness; therefore, we simultaneously define minimization of laminate thickness and delamination growth as objective functions. Fiber orientation angle, ply thickness, and stacking sequence are chosen as design variables. The authors consider symmetric glass/epoxy laminates with middle layers containing a single matrix crack. By applying multi-axial fatigue loading, the initiation and growth of local delamination from the tip of the matrix crack in the damaged ply interface became possible. Finally, it is indicated that NSGA-II has good convergence with damage optimization in cracked glass/epoxy composite laminates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据