4.7 Article

Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications

期刊

COMPOSITES PART B-ENGINEERING
卷 164, 期 -, 页码 629-639

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2019.01.085

关键词

Basalt fiber; Composite filaments; Mechanical properties; 3D printing

资金

  1. Fundamental Research Funds for the Central Universities [DUT17RC(4)57]

向作者/读者索取更多资源

The objective of this work is to develop KH550-treated basalt fiber (KBF) reinforced polylactide (PLA) composite as a potential 3D-printed feedstock. Herein, physical (thermal, mechanical, and rheological) properties and the feasibility of PLA/KBF for 3D printing are investigated. KBF is found to be oriented-dispersed along the printing direction in printed specimen, in contrast with randomly-distributed KBF in casting counterparts. Mechanical tests, rheological behavior and microstructure observation of PLA/KBF filaments are performed to compare with carbon fiber (CF) reinforced counterparts with the same fiber weight fraction. The results suggest that PLA/KBF exhibit comparable tensile properties and superior flexural properties to those of PLA/CF control, which can be attributed to high complex viscosity of PLA/CF affecting the interlayer adhesion. Furthermore, the printing feasibility of PLA/KBF filaments are evaluated. With increasing fiber length and weight fraction of KBF, low infill and micro-defects are shown in CT scans, which explain the deterioration in mechanical performance. The present work proves PLA/KBF as a mechanical-improved and low-cost feedstock for 3D printing applications in complex design and variable sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据