4.7 Article

Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models

期刊

CIRCULATION RESEARCH
卷 125, 期 2, 页码 223-241

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.119.314855

关键词

arteriosclerosis; lineage tracing; metabolism; stem cells; transplantation

资金

  1. British Heart Foundation [RG/14/6/31144]
  2. National Natural Science Foundation of China [81220108004, 81570249, 91339102, 91639302, 91539103, 31830039]
  3. Royal Society-Newton Advanced Fellowship [NA170109]

向作者/读者索取更多资源

Rationale: Transplantation-accelerated arteriosclerosis is one of the major challenges for long-term survival of patients with solid organ transplantation. Although stem/progenitor cells have been implicated to participate in this process, the cells of origin and underlying mechanisms have not been fully defined. Objective: The objective of our study was to investigate the role of c-Kit lineage cells in allograft-induced neointima formation and to explore the mechanisms underlying this process. Methods and Results: Using an inducible lineage tracing Kit-CreER;Rosa26-tdTomato mouse model, we observed that c-Kit is expressed in multiple cell types in the blood vessels, rather than a specific stem/progenitor cell marker. We performed allograft transplantation between different donor and recipient mice, as well as bone marrow transplantation experiments, demonstrating that recipient c-Kit(+) cells repopulate neointimal smooth muscle cells (SMCs) and leukocytes, and contribute to neointima formation in an allograft transplantation model. c-Kit-derived SMCs originate from nonbone marrow tissues, whereas bone marrow-derived c-Kit(+) cells mainly generate CD45(+) leukocytes. However, the exact identity of c-Kit lineage cells contributing to neointimal SMCs remains unclear. ACK2 (anti-c-Kit antibody), which specifically binds and blocks c-Kit function, ameliorates allograft-induced arteriosclerosis. Stem cell factor and TGF (transforming growth factor)-beta 1 levels were significantly increased in blood and neointimal lesions after allograft transplantation, by which stem cell factor facilitated c-Kit(+) cell migration through the stem cell factor/c-Kit axis and downstream activation of small GTPases, MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase)/MLC (myosin light chain), and JNK (c-Jun N-terminal kinase)/c-Jun signaling pathways, whereas TGF-beta 1 induces c-Kit(+) cell differentiation into SMCs via HK (hexokinase)-1-dependent metabolic reprogramming and a possible downstream O-GlcNAcylation of myocardin and serum response factor. Conclusions: Our findings provide evidence that recipient c-Kit lineage cells contribute to vascular remodeling in an allograft transplantation model, in which the stem cell factor/c-Kit axis is responsible for cell migration and HK-1-dependent metabolic reprogramming for SMC differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据