4.7 Article

Disturbance of photosystem II-oxygen evolution complex induced the oxidative damage in Chlorella vulgaris under the stress of cetyltrimethylammonium chloride

期刊

CHEMOSPHERE
卷 223, 期 -, 页码 659-667

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.01.135

关键词

Oxygen evolution activity; Reactive oxygen species; Oxidative damage; Photosystem II; Surfactant; Algae

资金

  1. National Natural Science Foundation of China [21577117]

向作者/读者索取更多资源

Oxygen evolution complex (OEC) in photosystem II (PSII) is sensitive to environmental stressors. However, oxidative damage mechanism in PSII-OEC is still unclear. Here, we investigated photosynthetic performance of PSII, oxidative stress and antioxidant reaction induced by reactive oxygen species (ROS) in a unicellular green alga Chlorella vulgaris (C. vulgaris) under the stress of cetyltrimethylammonium chloride (CTAC). From the changes of chlorophyll fluorescence parameters and PSII activity, it was proved that the electron transport, which occurred initially at the electron donor side of OEC, was disturbed by CTAC. Moreover, a significant decrease of the oxygen evolution rate in OEC (40.95%) while an increase of ROS (50.50%) was obtained after the exposure to 0.6 mg/L CTAC compared to the control (without CTAC), confirming that more oxygen transferred to ROS under the stress. Furthermore, the increased ROS in chloroplast and the structural destruction in thylakoid membrane were observed, respectively. These results proved that oxidative damage mechanism in PSII-OEC is mainly through the reduction of oxygen evolution and the production of excessive ROS, thus leading to the destruction of OEC performance and chloroplast structure. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据