4.6 Article

AuPt Bipyramid Nanoframes as Multifunctional Platforms for In Situ Monitoring of the Reduction of Nitrobenzene and Enhanced Electrocatalytic Methanol Oxidation

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 25, 期 30, 页码 7351-7358

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201900403

关键词

alloys; catalysts; nanoframes; nanostructures; Raman spectroscopy; reaction monitoring; SERS

资金

  1. National Natural Science Foundation of China [21501005]
  2. Anhui Provincial National Science Foundation [1608085QB38]
  3. Recruitment Program for Leading Talent Team of Anhui Province
  4. Program for Innovative Research Team of Anhui Education Committee
  5. Research Foundation for Science and Technology Leaders and Candidates of Anhui Province

向作者/读者索取更多资源

Multifunctional metal nanostructures with a hollow feature, especially for nanoframes, are highly attractive owing to their high surface-to-volume ratios. However, pre-grown metal nanocrystals are always involved during the preparation procedure, and a synthetic strategy without the use of a pre-grown template is still a challenge. In this article, a template-free strategy is reported for the preparation of novel AuPt alloy nanoframes through simply mixing HAuCl4 and H2PtCl6 under mild conditions. The alloy nanostructures show a bipyramid-frame hollow architecture with the existence of only the ten ridges and absence of their side faces. This is the first report of bipyramid-like nanoframes and a template-free method under mild conditions. This configuration merges the plasmonic features of Au and highly active catalytic sites of Pt in a single nanostructure, making it an ideal multifunctional platform for catalyzing and monitoring the catalytic reaction in real time. The superior catalytic activity is demonstrated by using the reduction of nitrobenzene to the corresponding aminobenzene as a model reaction. More importantly, the AuPt nanoframes can track the reduction process on the basis of the SERS signals of the reactants, intermediates, and products, which helps to reveal the reaction mechanism. In addition, the AuPt nanoframes show much higher electrocatalytic properties toward the methanol oxidation reaction than commercial Pt/C electrocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据