4.6 Article

SnS2/SnO2 Heterostructures towards Enhanced Electrochemical Performance of Lithium-Sulfur Batteries

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 25, 期 21, 页码 5416-5421

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201806231

关键词

Catalysis; electrochemistry; heterojunction; interfacial effect; lithium-sulfur batteries

资金

  1. National Natural Science Foundation of China [21646012]
  2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [2016DX08]
  3. China Postdoctoral Science Foundation [2016M600253]

向作者/读者索取更多资源

Lithium-sulfur (Li-S) batteries have been recognized as outstanding candidates for energy storage systems due to their superiority in terms of energy density. To meet the requirements for practical use, it is necessary to develop an effective method to realize Li-S batteries with high sulfur utilization and cycle stability. Here, a strategy to construct heterostructure composites as cathodes for high performance Li-S batteries is presented. Taking the SnS2/SnO2 couple as an example, SnS2/SnO2 nanosheet heterostructures on carbon nanofibers (CNFs), named C@SnS2/SnO2, were designed and synthesized. Considering the electrochemical performance of SnS2/SnO2 heterostructures, it is interesting to note that the existence of heterointerfaces could efficiently improve lithium ion diffusion rate so as to accelerate the redox reaction significantly, thus leading to the enhanced sulfur utilization and more excellent rate performance. Benefiting from the unique structure and heterointerfaces of C@SnS2/SnO2 materials, the battery exhibited excellent cyclic stability and high sulfur utilization. This work may provide a powerful strategy for guiding the design of sulfur hosts from selecting the material composition to constructing of microstructure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据