4.6 Article

Ambient Electrosynthesis of Ammonia on a Core-Shell-Structured Au@CeO2 Catalyst: Contribution of Oxygen Vacancies in CeO2

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 25, 期 23, 页码 5904-5911

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201806377

关键词

electrochemistry; gold; nanostructures; redox chemistry; supported catalysts

资金

  1. National Natural Science Foundation of China [51672277]
  2. CAS Pioneer Hundred Talents Program
  3. CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China

向作者/读者索取更多资源

Electrosynthesis of NH3 through the N-2 reduction reaction (NRR) under ambient conditions is regarded as promising technology to replace the industrial energy- and capital-intensive Haber-Bosch process. Herein, a room-temperature spontaneous redox approach to fabricate a core-shell-structured Au@CeO2 composite, with Au nanoparticle sizes below about 10 nm and a loading amount of 3.6 wt %, is reported for the NRR. The results demonstrate that as-synthesized Au@CeO2 possesses a surface area of 40.7 m(2) g(-1) and a porous structure. As an electrocatalyst, it exhibits high NRR activity, with an NH3 yield rate of 28.2 mu g h(-1) cm(-2) (10.6 mu g h(-1) mg(cat.)(-1), 293.8 mu g h(-1) mg(Au)(-1)) and a faradaic efficiency of 9.50 % at -0.4 V versus a reversible hydrogen electrode in 0.01 m H2SO4 electrolyte. The characterization results reveal the presence of rich oxygen vacancies in the CeO2 nanoparticle shell of Au@CeO2; these are favorable for N-2 adsorption and activation for the NRR. This has been further verified by theoretical calculations. The abundant oxygen vacancies in the CeO2 nanoparticle shell, combined with the Au nanoparticle core of Au@CeO2, are electrocatalytically active sites for the NRR, and thus, synergistically enhance the conversion of N-2 into NH3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据