4.5 Article

Implantation of a Tissue-Engineered Tubular Heart Valve in Growing Lambs

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 45, 期 2, 页码 439-451

出版社

SPRINGER
DOI: 10.1007/s10439-016-1605-7

关键词

Heart valve; Tissue engineering; Congenital heart defects; Matrix remodeling; Pediatric

资金

  1. NIH [R01 HL107572]

向作者/读者索取更多资源

Current pediatric heart valve replacement options are suboptimal because they are incapable of somatic growth. Thus, children typically have multiple surgeries to replace outgrown valves. In this study, we present the in vivo function and growth potential of our tissue-engineered pediatric tubular valve. The valves were fabricated by sewing two decellularized engineered tissue tubes together in a prescribed pattern using degradable sutures and subsequently implanted into the main pulmonary artery of growing lambs. Valve function was monitored using periodic ultrasounds after implantation throughout the duration of the study. The valves functioned well up to 8 weeks, 4 weeks beyond the suture strength half-life, after which their insufficiency index worsened. Histology from the explanted valves revealed extensive host cell invasion within the engineered root and commencing from the leaflet surfaces. These cells expressed multiple phenotypes, including endothelial, and deposited elastin and collagen IV. Although the tubes fused together along the degradable suture line as designed, the leaflets shortened compared to their original height. This shortening is hypothesized to result from inadequate fusion at the commissures prior to suture degradation. With appropriate commissure reinforcement, this novel heart valve may provide the somatic growth potential desired for a pediatric valve replacement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据