4.7 Article

Cell-specific regulation of Nrf2 during ROS-Dependent cell death caused by 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ)

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 302, 期 -, 页码 1-10

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2019.01.027

关键词

Reactive oxygen species; 2,3,5-tris(Glutathion-S-yl)hydroquinone; Nrf2

资金

  1. National Natural Science Foundation of China [21507093]
  2. Natural Science Foundation of Liaoning Province [2015020737]
  3. Fund for long-term training of young teachers in Shenyang Pharmaceutical University [ZCJJ2014402]
  4. General project of Education Department of Liaoning Province [L2015529]
  5. National Institute of Environmental Health Sciences [P30ES006694]

向作者/读者索取更多资源

2,3,5-tris(Glutathion-S-yl)hydroquinone (TGHQ), a potent nephrotoxic and nephroncarcinogenic metabolite of benzene and hydroquinone, retains the ability to redox cycle and create oxidative stress. We have previously detected that TGHQ induces ROS-dependent necrotic or apoptotic cell death in renal epithelial HK-2 and human leukemic HL-60 cells respectively. Herein, we sought to determine the nature of the Nrf2 regulation in HK-2 and HL-60 cells undergoing TGHQ-mediated ROS-dependent cell death, due to the key role of Nrf2 in oxidative stress. Intriguingly, Nrf2 was upregulated in HK-2, but not in HL-60 cells, despite the ROS-dependent nature of cell death in both cell types. The possibility that TGHQ targeted the GSK3 beta-dependent Nrf2 stabilization pathway in HL-60 cells was discounted, whereas TGHQ-induced decreases in Nrf2 phosphorylation at Ser40 site appears to partially underlie the inability of TGHQ to up-regulate Nrf2 expression in HL-60 cells. Moreover, whereas the TGHQ-induced post-translational stabilization of Nrf2 in HK-2 cells resulted in the expected upregulation of HO1 and NQO1 mRNA, TGHQ actually decreased Nrf2 mRNA in HL-60 cells, with a concomitant decrease in NQO1, but not HO1 mRNA. In summary, we define differences between the two cell types that might contribute to the engagement of the Nrf2 signaling pathways. By extension, these data provide evidence that Nrf2 is not necessarily activated in ROS-dependent cell death, and further delve into the knowledge that Nrf2 regulation sensing by cells might be achieved at solely transcriptional level, not related to its degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据