4.6 Article

High-Capacity and Long-Cycle Lifetime Li-CO2/O2 Battery Based on Dandelion-like NiCo2O4 Hollow Microspheres

期刊

CHEMCATCHEM
卷 11, 期 13, 页码 3117-3124

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201900507

关键词

electrocatalysis; lithium-air batteries; ambient operation; carbon dioxide; nickel

资金

  1. National Key Research & Development Project-International Cooperation Program [2016YFE0126900]
  2. Hubei Province [2018AAA057]

向作者/读者索取更多资源

As a promising energy storage technology, Li-CO2/O-2 battery with ultrahigh discharge capacities have received much attention, reaching capacities three times that of Li-O-2 batteries. Herein, using an excellent catalyst, NiCo2O4 designed as a 3D dandelion-like hollow nanostructure, a Li-CO2/O-2 battery is systematically investigated to understand how the reaction mechanisms are affected by CO2. With CO2 stabilization, the batteries could achieve a specific discharge capacity as high as 22000 mAh/g and a long-term cycling performance of up to 140 cycles without apparent deterioration. In addition, the intrinsic mechanism of the current density influence is explored based on the Li2CO3 morphology evolution. Superoxide anion radical species (O-2(.-) ) were identified to be rapidly consumed by CO2, which dramatically enhances the stability of Li-O-2 batteries. The results indicate that the NiCo2O4 nanocatalyst can efficiently inhibit Li2CO3 aggregation and realize the maximum utilization of active sites. The results confirm that the 3D dandelion-like NiCo2O4 catalyst can be a potential cathode for Li-CO2/O-2 batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据