4.4 Article

Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat

期刊

ANNALS OF APPLIED BIOLOGY
卷 169, 期 1, 页码 27-35

出版社

WILEY
DOI: 10.1111/aab.12276

关键词

Biofortification; synthetic hexaploid wheat; wheat breeding

资金

  1. HarvestPlus challenge programme
  2. CGIAR research programme on Agriculture for Nutrition and Health

向作者/读者索取更多资源

Malnutrition because of the deficiency of minerals such as iron (Fe) and zinc (Zn) afflicts over 2 billion people worldwide. Wheat is a major staple crop, providing 20% of dietary energy and protein consumption worldwide. Breeding wheat with elevated levels of grain Zn and Fe concentrations (GZn and GFe) represents a significant opportunity to increase the intake of these micronutrients for the resource poor people who depend on it as a major source of dietary energy. Synthetic hexaploid wheats (SHWs) have large genetic variation for GZn and GFe, which can be exploited for developing wheat varieties with higher concentrations of these minerals. The objective of this study was to localise genomic regions associated with GZn and GFe, thousand kernel weight (TKW) and test weight (TW) in a mapping population derived from the cross of Seri M82 and the SHWCWI76364. Major quantitative trait loci (QTL) on chromosome 4BS were detected for GZn and GFe; the QTL explained up to 19.6% of the total phenotypic variation for GZn and showed pleiotropic effects on GFe. This indicates that simultaneous improvement of GZn and GFe is feasible. Three and five QTL for TW and TKW were detected, respectively. One of the QTL for TKW was also located on chromosome 4BS. Positive correlations between plant height and GZn/GFe were observed. The 4BS QTL is of great interest for breeding biofortified wheat by means of marker-assisted selection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据