4.4 Article

Survival of root-lesion nematodes (Pratylenchus thornei) after wheat growth in a vertisol is influenced by rate of progressive soil desiccation

期刊

ANNALS OF APPLIED BIOLOGY
卷 170, 期 1, 页码 78-88

出版社

WILEY
DOI: 10.1111/aab.12316

关键词

Anhydrobiosis; nematode population dynamics; Pratylenchus thornei; root-lesion nematode; soil desiccation; wheat

资金

  1. Grains Research and Development Corporation (GRDC)

向作者/读者索取更多资源

The root-lesion nematode (Pratylenchus thornei) is a major pathogen of wheat in the subtropical grain region of eastern Australia. Experiments were conducted to learn whether soil desiccation can account for the rapid fall in peak P. thornei population densities noted in the field after wheat matures. The decline in population densities of P. thornei after growth of wheat was measured on progressive desiccation of soil with roots by fast and slow drying methods. The vertisolic soil of initial moisture content 45% w/w (or matric potential of pF 3.3) was dried in 5% decrements to an air-dried gravimetric moisture content of 15% (pF 5.6) taking 10.7 h for fast drying and 91.5 h for slow drying. After drying, live nematodes were extracted with Whitehead trays for 2 and 7 days and counted in four life stages (adults and juvenile stages J2, J3 and J4). Fast drying resulted in a sigmoidal decline in total P. thornei with only 5% of the population alive in soil at 15% moisture content, but slow drying had no significant effect on the population density. The percentage of nematodes extracted at 2 days compared with the total extracted over 7 days in undried soil (similar to 89% of total) declined quadratically on desiccation to be 48% (fast drying) and 78% (slow drying) at 15% moisture content. With fast drying, the proportion of adults and J2 decreased whereas the proportion of J4 increased as the soil dried. With slow drying, the proportion of J2 and J3 stages decreased while the proportion of J4 increased. Thus the J4 or pre-adult was the life stage most tolerant of soil desiccation. Time is required for P. thornei to go into a state of anhydrobiosis as a soil dries and this information can be used to model P. thornei survival in the field based on environmental parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据