4.8 Article

Graphene multi-protonation: A cooperative mechanism for proton permeation

期刊

CARBON
卷 144, 期 -, 页码 724-730

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2018.12.086

关键词

-

资金

  1. Spanish grant [FIS2017-84391-C2-2-P]
  2. CONACYT

向作者/读者索取更多资源

The interaction between protons and graphene is attracting a large interest due to recent experiments showing that these charged species permeate through the 2D material following a low barrier (similar to 0.8 eV) activated process. A possible explanation involves the flipping of a chemisorbed proton (rotation of the C-H+ thorn bond from one to the other side of the carbon layer) and previous studies have found so far that the energy barriers (around 3.5 eV) are too high to explain the experimental findings. Contrarily to the previously adopted model assuming an isolated proton, in this work we consider protonated graphene at high local coverage and explore the role played by nearby chemisorbed protons in the permeation process. By means of density functional theory calculations exploiting large molecular prototypes for graphene it is found that, when various protons are adsorbed on the same carbon hexagonal ring, the permeation barrier can be reduced down to 1.0 eV. The related mechanism is described in detail and could shed a new light on the interpretation of the experimental observations for proton permeation through graphene. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据