4.4 Article

MicroRNA-552 deficiency mediates 5-fluorouracil resistance by targeting SMAD2 signaling in DNA-mismatch-repair-deficient colorectal cancer

期刊

CANCER CHEMOTHERAPY AND PHARMACOLOGY
卷 84, 期 2, 页码 427-439

出版社

SPRINGER
DOI: 10.1007/s00280-019-03866-7

关键词

Colorectal cancer (CRC); 5-Fluorouracil (5-FU); Chemoresistance; miRNA; TGF-beta

向作者/读者索取更多资源

ObjectiveAlthough DNA-mismatch-repair-deficient (dMMR) status and aberrant expression of miRNAs are both critically implicated in the pathogenesis of resistance to 5-fluorouracil (5-FU) in colorectal cancer (CRC), whether these two factors regulate tumor response to 5-FU in a coordinated manner remains unknown. This study is designed to elucidate whether changes in miR-552 expression levels correlate to 5-FU-based chemoresistance in CRC, and to further identify the putative targets of miR-552 using multiple approaches.MethodsmiR-552 expression was assessed in 5-FU-resistant CRC tissues and cells using real-time PCR. Effects of miR-552 dysregulation on 5-FU resistance in CRC cells were determined by measuring cell viability, apoptosis and in vivo oncogenic capacity. Finally, we studied the posttranscriptional regulation of SMAD2 by miR-552 using multiple approaches including luciferase reporter assay, site-directed mutagenesis and transient/stable transfection, at molecular and functional levels.ResultsExpression of miR-552 was significantly downregulated in 5-FU-resistant CRC tissues and cells, and this downregulation, regulated by dMMR, was associated with poor postchemotherapy prognosis. Functionally, forced expression of miR-552 exhibited a proapoptotic effect and attenuated 5-FU resistance, whereas inhibition of miR-552 expression potentiated 5-FU resistance in CRC cells. Mechanically, miR-552 directly targeted the 3-UTR of SMAD2, and stable ablation of SMAD2 neutralized the promoting effects of miR-552 deficiency-induced 5-FU resistance.Conclusions Overall, our findings have revealed a critical role of miR-552/SMAD2 cascade in modulating cellular response to 5-FU chemotherapy. miR-552 may act as an efficient mechanistic link synchronizing dMMR and 5-FU resistance in CRC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据