4.7 Review

Impaired redox regulation of estrogen metabolizing proteins is important determinant of human breast cancers

期刊

CANCER CELL INTERNATIONAL
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12935-019-0826-x

关键词

Estrogen; hSULT1E1; Estrogen sulfatase; Formylglycine generating enzyme; Gynecological cancers; ER positive

类别

资金

  1. UGC-New Delhi, JRF/SRF fellowship

向作者/读者索取更多资源

Estrogen evidently involves critically in the pathogenesis of gynaecological-cancers. Reports reveal that interference in estrogen-signalling can influence cell-cycle associated regulatory-processes in female reproductive-organs. The major determinants that influence E2-signallings are estrogen-receptor (ER), estrogen-sulfotransferase (SULT1E1), sulfatase (STS), and a formylglycine-generating-enzyme (FGE) which regulates STS activity. The purpose of this mini review was to critically analyze the correlation between oxidative-threats and redox-regulation in the process of estrogen signalling. It is extensively investigated and reported that oxidative-stress is linked to cancer. But no definite mechanism has been explored till date. The adverse effects of oxidative-threat/free-radicals (like genotoxic-effects, gene-regulation, and mitochondrial impairment) have been linked to several diseases like diabetes/cardiovascular-syndrome/stroke and cancer. However, a significant correlation between oxidative-stress and gynaecological-cancers are repeatedly reported without pointing a definite mechanism. For the first time in our study we have investigated the relationship between oxidative stress and the regulation of estrogen via estrogen metabolizing proteins. Reports reveal that ER, SULT1E1, STS and FGE are target-molecules of oxidative-stress and may function differently in oxidizing and reducing environment. In addition, estrogen itself can induce oxidative-stress. This fact necessitates identifying the critical connecting events between oxidative-stress and regulation of estrogen-associated-molecules (ER, SULT1E1, STS, and FGE) that favors tumorigenesis/carcinogenesis. The current review focus is on unique redox-regulation of estrogen and its regulatory-molecules via oxidative-stress. This mechanistic-layout may identify new therapeutic-targets and open further scopes to treat gynecological-cancers more effectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据