4.4 Article

Coseismic and Postseismic Deformation Associated with the 2018 Mw 7.9 Kodiak, Alaska, Earthquake from Low-Rate and High-Rate GPS Observations

期刊

出版社

SEISMOLOGICAL SOC AMER
DOI: 10.1785/0120180246

关键词

-

资金

  1. National Key R&D Program of China [2018YFC1503604]
  2. National Natural Science Foundation of China [41431069, 41774011, 41721003, 41861134009]

向作者/读者索取更多资源

Low-rate (15 s) and high-rate (1 s) Global Positioning System (GPS) solutions were employed to investigate the coseismic deformation associated with the 23 January 2018 M(w )7.9 Kodiak, Alaska, offshore earthquake. The coseismic displacements of kinematic (high-rate observations) and quasi-kinematic (2 hr of low-rate observations after the earthquake) GPS solutions are consistent with those derived from static GPS daily solutions, and all three sets conform to the characteristics of a strike-slip earthquake. A comparison between the static and quasi-kinematic results suggests that postseismic deformation within the first four days was negligible. We inverted the static displacement field for the slip in a five-segment model and inferred that the largest slip occurred on right-lateral south-southeast-striking (2.27 m) and left-lateral northeast-striking (2.42 m) fault segments. The inverted geodetic moment is M(0 )9.66 x 10(20) N . m (M(w )7.92). The nine-month postseismic horizontal displacements at 12 nearby GPS sites we studied are < 1 cm, and the maximum postseismic deformation is 7.4 mm at site AC26. The postseismic transient was fit slightly better by a logarithmic model with a decay time of 6.4 days than by an exponential model with a decay time of 75.0 days. The postseismic deformation can be explained well by afterslip and/or viscoelastic relaxation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据