4.4 Article

Topological effects on the designability and bactericidal potency of antimicrobial peptides

期刊

BIOPHYSICAL CHEMISTRY
卷 248, 期 -, 页码 1-8

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bpc.2019.02.005

关键词

Antimicrobial peptides; Tacticity; Molecular dynamics; Designability; Topology

资金

  1. Department of Biotechnology (DBT-NERBPMC) Unit of Excellence program [BT/565/NE/U-Excel/2016]

向作者/读者索取更多资源

New ideas and methods are being developed to generate highly designable small functional protein folds beyond the confines of natural structures, from secondary to quaternary level. Highly designable folds can have multiple sequence solutions, which are thermodynamically and kinetically stable. We have previously described how short syndiotactic helices can be exceptionally stable energetically, and how they can be used as a template for designing antibacterial agents. In this work, we have designed four syndiotactic, single turn, amphipathic; cationic 7-mer peptides which are the sequence and structural subset of earlier published 12-mer sequences. We examined the stability of the designed structures and its effects on the biological activity of such short peptide sequences. This was achieved by making objective comparisons between 12-mer and 7-mer sequences in terms of their antibacterial activity. Further, we investigated the mechanistic origins of clearly different bactericidal potency of single (7-mer) and double (12-mer) turn syndiotactic helices using molecular dynamics simulations. Our results suggest that conformationally constrained stable short double turn peptide scaffolds are highly designable, whereas single turn structures are more likely to be disordered. The stability of the designed peptide structure provides a platform for inclusion of multiple sequence variables and defined electrostatic fingerprints. Therefore, a stable peptide scaffold along with pre-defined electrostatic signatures can together be utilized for the design of novel antimicrobial peptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据