4.6 Article

Two-fluid simulations of waves in the solar chromosphere

期刊

ASTRONOMY & ASTROPHYSICS
卷 627, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201834154

关键词

Sun: chromosphere; Sun: oscillations; Sun: magnetic fields; methods: numerical

资金

  1. Spanish Ministry of Science [AYA2014-55078-P]
  2. US National Science Foundation
  3. European Research Council [ERC-2017-CoG771310-PI2FA]

向作者/读者索取更多资源

Solar chromosphere consists of a partially ionized plasma, which makes modeling the solar chromosphere a particularly challenging numerical task. Here we numerically model chromospheric waves using a two-fluid approach with a newly developed numerical code. The code solves two-fluid equations of conservation of mass, momentum, and energy, together with the induction equation for the case of the purely hydrogen plasma with collisional coupling between the charged and neutral fluid components. The implementation of a semi-implicit algorithm allows us to overcome the numerical stability constraints due to the stiff collisional terms. We test the code against analytical solutions of acoustic and Alfven wave propagation in uniform medium in several regimes of collisional coupling. The results of our simulations are consistent with the analytical estimates, and with other results described in the literature. In the limit of a large collisional frequency, the waves propagate with a common speed of a single fluid. In the other limit of a vanishingly small collisional frequency, the Alfven waves propagate with an Alfven speed of the charged fluid only, while the perturbation in neutral fluid is very small. The acoustic waves in these limits propagate with the sound speed corresponding to either the charges or the neutrals, while the perturbation in the other fluid component is negligible. Otherwise, when the collision frequency is similar to the real part of the wave frequency, the interaction between charges and neutrals through momentum-transfer collisions cause alterations of the waves frequencies and damping of the wave amplitudes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据