4.2 Article

The CD147-HYALURONAN Axis in Cancer

出版社

WILEY
DOI: 10.1002/ar.24147

关键词

CD147; hyaluronan; CD44; LYVE-1; cancer stem cells

向作者/读者索取更多资源

CD147 (basigin; EMMPRIN), hyaluronan, and hyaluronan receptors (e.g., CD44) are intimately involved in several phenomena that underlie malignancy. A major avenue whereby they influence tumor progression is most likely their role in the characteristics of cancer stem cells (CSCs), subpopulations of tumor cells that exhibit chemoresistance, invasiveness, and potent tumorigenicity. Both CD147 and hyaluronan have been strongly implicated in chemoresistance and invasiveness, and may be drivers of CSC characteristics, since current evidence indicates that both are involved in epithelial-mesenchymal transition, a crucial process in the acquisition of CSC properties. Hyaluronan is a prominent constituent of the tumor microenvironment whose interactions with cell surface receptors influence several signaling pathways that lead to chemoresistance and invasiveness. CD147 is an integral plasma membrane glycoprotein of the Ig superfamily and cofactor in assembly and activity of monocarboxylate transporters (MCTs). CD147 stimulates hyaluronan synthesis and interaction of hyaluronan with its receptors, in particular CD44 and LYVE-1, which in turn result in activation of multiprotein complexes containing members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or MCT families within lipid raft domains. Multivalent hyaluronan-receptor interactions are essential for formation or stabilization of these lipid raft complexes and for downstream signaling pathways or transporter activities. We conclude that stimulation of hyaluronan-receptor interactions by CD147 and the consequent activities of these complexes may be critical to the properties of CSCs and their role in malignancy. Anat Rec, 2019. (c) 2019 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据