4.8 Article

A Cyclic Ion Mobility-Mass Spectrometry System

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 13, 页码 8564-8573

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b01838

关键词

-

向作者/读者索取更多资源

Improvements in the performance and availability of commercial instrumentation have made ion mobility-mass spectrometry (IM-MS) an increasingly popular approach for the structural analysis of ionic species as well as for separation of complex mixtures. Here, a new research instrument is presented which enables complex experiments, extending the current scope of IM technology. The instrument is based on a Waters SYNAPT G2-Si IM-MS platform, with the IM separation region modified to accept a cyclic ion mobility (cIM) device. The cIM region consists of a 98 cm path length, closed-loop traveling wave (TW)-enabled IM separator positioned orthogonally to the main ion optical axis. A key part of this geometry and its flexibility is the interface between the ion optical axis and the cIM, where a planar array of electrodes provides control over the TW direction and subsequent ion motion. On either side of the array, there are ion guides used for injection, ejection, storage, and activation of ions. In addition to single and multipass separations around the cIM, providing selectable mobility resolution, the instrument design and control software enable a range of multifunction experiments such as mobility selection, activation, storage, IMS, and importantly custom combinations of these functions. Here, the design and performance of the cIM-MS instrument is highlighted, with a mobility resolving power of approximately 750 demonstrated for 100 passes around the cIM device using a reverse sequence peptide pair. The multifunction capabilities are demonstrated through analysis of three isomeric pentasaccharide species and the small protein ubiquitin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据