4.8 Article

Mitochondrion-Targeting Fluorescence Probe via Reduction Induced Charge Transfer for Fast Methionine Sulfoxide Reductases Imaging

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 9, 页码 5489-5493

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b00383

关键词

-

资金

  1. National Natural Science Foundation of China [21527810, 91753107, 21705041]

向作者/读者索取更多资源

Methionine sulfoxide reductases (Msrs) play essential roles in maintaining mitochondrial function and are recognized as potential therapeutic targets. However, current probes for Msrs fail to target mitochondria and exhibit a relatively slow response and limited sensitivity. Here we develop a novel turn-on fluorescence probe that facilitates imaging of mitochondrial Msrs in living cells. The probe is constructed by conjugating a methyl phenyl sulfoxide, a mimic Msrs substrate, to an electron-withdrawing hydrophobic cation, methylpyridinium. The probe of acceptor-acceptor structure is initially non-emissive. Msrs catalyzed reduction of sulfoxide to sulfide generated a fluorophore of distinct donor-acceptor structure. The probe is demonstrated to exhibit high sensitivity, fast response, and high selectivity toward MsrA in vitro. Furthermore, the probe is successfully introduced to detect and image Msrs in living cells with excellent mitochondrial-targeting capability. Moreover, the probe also reveals decreased Msrs activity in a cellular Parkinson's disease model. Our probe affords a powerful tool for detecting and visualizing mitochondrial Msrs in living cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据