4.4 Article

Predicting the Thermal and Allometric Dependencies of Disease Transmission via the Metabolic Theory of Ecology

期刊

AMERICAN NATURALIST
卷 193, 期 5, 页码 661-676

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/702846

关键词

temperature; host-parasite interaction; host-parasite contact; Daphnia magna; Ordospora colligata; transmission rate

资金

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. Canada Research Chair
  3. Ontario Graduate Scholarship

向作者/读者索取更多资源

The metabolic theory of ecology (MTE) provides a general framework of allometric and thermal dependence that may be useful for predicting how climate change will affect disease spread. Using Daphnia magna and a microsporidian gut parasite, we conducted two experiments across a wide thermal range and fitted transmission models that utilize MTE submodels for transmission parameters. We decomposed transmission into contact rate and probability of infection and further decomposed probability of infection into a product of gut residence time (GRT) and per-parasite infection rate of gut cells. Contact rate generally increased with temperature and scaled positively with body size, whereas infection rate had a narrow hump-shaped thermal response and scaled negatively with body size. GRT increased with host size and was longest at extreme temperatures. GRT and infection rate inside the gut combined to create a 3.5 times higher probability of infection for the smallest relative to the largest individuals. Small temperature changes caused large differences in transmission. We also fit several alternative transmission models to data at individual temperatures. The more complex models-parasite antagonism or synergism and host heterogeneity-did not substantially improve the fit to the data. Our results show that transmission rate is the product of several distinct thermal and allometric functions that can be predicted continuously across temperature and host size using the MTE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据