4.8 Article

Hydrophobic Hydrogels with Fruit-Like Structure and Functions

期刊

ADVANCED MATERIALS
卷 31, 期 25, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201900702

关键词

asymmetric diffusion; hydrophobic hydrogels; phase separation; seawater desalination; semipermeable skin

资金

  1. JSPS KAKENHI [JP17H06144, 17H06376]
  2. Grants-in-Aid for Scientific Research [17H06376] Funding Source: KAKEN

向作者/读者索取更多资源

Normally, a polymer network swells in a good solvent to form a gel but the gel shrinks in a poor solvent. Here, an abnormal phenomenon is reported: some hydrophobic gels significantly swell in water, reaching water content as high as 99.6 wt%. Such abnormal swelling behaviors in the nonsolvent water are observed universally for various hydrophobic organogels containing omniphilic organic solvents that have a higher affinity to water than to the hydrophobic polymers. The formation of a semipermeable skin layer due to rapid phase separation, and the asymmetric diffusion of water molecules into the gel driven by the high osmotic pressure of the organic solvent-water mixing, are found to be the reasons. As a result, the hydrophobic hydrogels have a fruit-like structure, consisting of hydrophobic skin and water-trapped micropores, to display various unique properties, such as significantly enhanced strength, surface hydrophobicity, and antidrying, despite their extremely high water content. Furthermore, the hydrophobic hydrogels exhibit selective water absorption from concentrated saline solutions and rapid water release at a small pressure like squeezing juices from fruits. These novel functions of hydrophobic hydrogels will find promising applications, e.g., as materials that can automatically take the fresh water from seawater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据