4.8 Article

Porous Silicon Nanostructures as Effective Faradaic Electrochemical Sensing Platforms

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 24, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201809206

关键词

biosensing; carbon stabilization; electrochemistry; porous silicon

资金

  1. Australian Research Council [DP160104362, LP160101050]
  2. Australian Research Council [LP160101050] Funding Source: Australian Research Council

向作者/读者索取更多资源

The electrochemical performance of porous silicon (pSi) stabilized via thermal decomposition of acetylene gas is investigated for the first time. In this study, pSi undergoes two thermal treatments at either 525 or 800 degrees C, which result in hydrogen-terminated thermally hydrocarbonized pSi (THCpSi) and hydroxyl-terminated thermally carbonized pSi (TCpSi), respectively, the latter upon dipping in hydrofluoric acid to activate the surface termination. Electrochemical characterization, using cyclic voltammetry, chronocoulometry, and electrochemical impedance spectroscopy in the presence of several redox pairs, [Fe(CN)(6)](3/4-), [Ru(NH3)(6)](2/3+), and hydroquinone/quinone, is used to demonstrate the versatility and high stability to degradation of carbon-stabilized pSi nanostructures and their excellent electrochemical performance. Added to the large surface area, adjustable pore morphology and tailorable surface chemistry of THCpSi and TCpSi, these nanostructures demonstrate fast electron-transfer kinetics, providing key advantages over conventional carbon electrodes. The versatile surface chemistry of THCpSi and TCpSi offer various possibilities to introduce multiple functional groups depending on the nature of the bioreceptor to be immobilized. For proof of principle, the use of a THCpSi-based immunosensor to detect MS2 bacteriophage is demonstrated by means of electrochemical impedance spectroscopy, showing a detection limit of 4.9 pfu mL(-1). Carbon-stabilized pSi structures represent a new class of nanostructured electrodes for biosensing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据